[image: image1.jpg]L H KA

JIANGSU UNIVERSITY

Course name: Data Structure
Teaching medium: English

A. COURSE DESCRIPTION

Course Code:

Credits: 5.0

Teaching Hours: 80 （Lecture: 48 Programming: 32）

Prerequisite Course: Discrete Mathematics, Programming Fundamental, Object-oriented Programming

Major: Computer Science and Technology

Teaching Material: Clifford A. Shaffer, Data Structures and Algorithm Analysis (C++), Dover, 2013

School: The School of Computer Science and Communication Engineering
B. METHOD OF INSTRUCTION

Teaching, case study, self-learning.

C. COURSE OBJECTIVES (five or six objectives; general but comprehensive)
Objective 1: Understand basic concepts about data structure, master the method to describe algorithms, understand the concept of time and space complexity, and master how to analyze them.
Objective 2: Have a general idea about various data structures, understand the logic feature of various data structures, be able to master the physical storage, and design algorithm based on the storage, be able to analyze the performance of the algorithms.
Objective 3: Understand the concept of searching and sorting, master various searching and sorting algorithms, be able to analyze the performance of those algorithms.
Objective 4: Be able to organize the data reasonably according to the practical problems, and to effectively store the data in the computer.
Objective 5: Bear the ability to design and analyze algorithms for solving engineering problems.
Objective 6: Be able to implement the algorithm through the specific programming language.
D. COURSE TOPICS/UNITS AND DATES

	Content
	Schedule
	Teaching Method

	
	Theory
	Practice
	

	Chapter 1. Introduction
	4
	0
	Teaching, case study, self-learning

	Chapter 2. List
	6
	4
	Teaching, demonstration

	Chapter 3. Stack and Queue
	6
	4
	Teaching, case study

	Chapter 4. Tree
	14
	8
	Teaching, case study, demonstration

	Chapter 5. Graph
	8
	8
	Teaching, demonstration

	Chapter 6. Search
	4
	4
	Teaching, case study, demonstration

	Chapter 7. Sort
	6
	4
	Teaching, case study, demonstration

	Total
	48
	32
	

E. TEXTBOOK(S) AND REQUIRED TOOLS OR SUPPLIES
Textbook (required): Data Structures and Algorithm Analysis (C++)
Supplies and/or tools: PC and VS.net IDE

F. GRADING PLAN
	Method
	Requirement
	Weight
	Remarks

	Presence
	Each presence will get 10 points, in total 10 times.
	10%
	

	Assignment
	5 times experiment average
	10%
	

	Experiment
	5 times experiment average
	10%
	Appendix 1

	Final exam
	Close-book
	70%
	

Appendix 1: Grading content and grading standard for experiment

Grading content and weight

	No
	Content
	Weight
	Requirement

	1
	Preview
	20%
	Prepare the relevant code in advance

	2
	Programming skill
	60%
	Provide the correct result

	3
	Report
	20%
	Clear and on time

Note: The detailed grading standard please see following table.
Grading standard (full mark: 100)

	Item
	Excellent（100-90）
	Good（80-89）
	Average（70-79）
	Fair（60-69）
	fail（<=59）

	Preview

20’’
	Prepare all the relevant code in advance

18-20’’
	Prepare most of the relevant code in advance

16-17’’
	Prepare part of the relevant code in advance

14-15’’
	Prepare few of the relevant code in advance 12-13’’
	Hardly prepare anything in advance

<=11’’

	Programming skill

60’’
	The program is correct and the result is very clear

54-60’’
	The program is correct and the result is not very clear

48-53’’
	The program could run but there are some minor mistakes

42-47’’
	The program could run but there are mistakes

41-36’’
	The program could hardly run because there are many errors

<=35’’

	Report

20’’
	Clear and on time

18-20’’
	Somewhat clear and on time

16-17’’
	Somewhat clear and not on time

14-15’’
	Unclear but on time

12-13’’
	Unclear and not on time

<=11’’

G. COURSE COMPONENT SPECIFICS

Chapter 1 Introduction

Supported Course Objectives: A.1. Understand basic concepts about data structure, master the method to describe algorithms, understand the concept of time and space complexity, and master how to analyze them.

A. Contents and Methods

1. Become aware of structured design and object-oriented programming methodologies. (Teaching and self-learning)

2. Learn about the abstract data type (ADT). Explore how classes are used to implement ADT. (Teaching and case study)

3. Become aware of team work and interaction. (Teaching)

4. Understand the complexity of algorithms. (Teaching and case study)
B. Basic requirements for knowledge, ability and quality

1. Understand the nature of the course, tasks and purpose.

2. Review the concepts of object-oriented programming.

3. Become aware of the abstract data types and how classes are used to implement ADT.
C. Key points and difficulties

Key points

1. The tasks of data structure.

 2. Abstract data type

 3. Time and space complexity

Difficulties

 1. Time complexity.
2. Space complexity

Chapter 2 List

Supported Course Objectives: A.2. Have a general idea about various data structures, understand the logic feature of various data structures, be able to master the physical storage, and design algorithm based on the storage, be able to analyze the performance of the algorithms; B.1. Be able to organize the data reasonably according to the practical problems, and to effectively store the data in the computer; B.2. Bear the ability to design and analyze algorithms for solving engineering problems; B.3. Be able to implement the algorithm through the specific programming language.
A. Contents and Methods

1. Learn about linked lists and be aware of the basic properties of lists. (Teaching)

2. Explore the insertion and deletion operations on lists. (Teaching)

3. Know how to build and manipulate a sequential list. (Teaching)

4. Discover how to build and manipulate a linked list. (Teaching)

5. Discover how to use the STL container list. (Teaching and demonstration)
B. Objectives

1. Know about linked list topics, such as traversal, searching, inserting, deleting.

2. Learn to build a list and how to define list as an ADT.

3. Become aware of how to use STL sequence container list.
C. Key points and difficulties

Key points
1. Operations on linked list.

2. Operations on sequential list.

Difficulties

 1. Operations on linked list.

Chapter 3 Stack and Queue

Supported Course Objectives: A.2. Have a general idea about various data structures, understand the logic feature of various data structures, be able to master the physical storage, and design algorithm based on the storage, be able to analyze the performance of the algorithms; B.1. Be able to organize the data reasonably according to the practical problems, and to effectively store the data in the computer; B.2. Bear the ability to design and analyze algorithms for solving engineering problems; B.3. Be able to implement the algorithm through the specific programming language.

A. Contents and Methods

1. Learn about stack, examine various stack operations. (Teaching)

2. Learn how to implement a stack as an array. (Teaching)

3. Learn how to implement a stack as a linked list. (Teaching)

4. Discover stack applications. (Teaching and case study)

5. Learn about queue, examine various queue operations. (Teaching)

6. Learn how to implement a queue as an array. (Teaching)

7. Learn how to implement a queue as a linked list. (Teaching)

8. Discover queue applications. (Teaching and case study)
B. Objectives

1. Understanding the Last in First out (LIFO) data structure.

2. Be familiar with two basic ways to implement stack.

3. Understanding the First in First out (FIFO) data structure.

4. Be familiar with two basic ways to implement queue.

5. Learn about common application for queues.
C. Key points and difficulties

Key points

1. Implementation of stack.

2. Implementation of queue.

 3. Recursion

Difficulties

 1. Circular queue.

 2. Recursion
Chapter 4 Tree

Supported Course Objectives: A.2. Have a general idea about various data structures, understand the logic feature of various data structures, be able to master the physical storage, and design algorithm based on the storage, be able to analyze the performance of the algorithms; B.1. Be able to organize the data reasonably according to the practical problems, and to effectively store the data in the computer; B.2. Bear the ability to design and analyze algorithms for solving engineering problems; B.3. Be able to implement the algorithm through the specific programming language.
A. Contents and Methods

1. Learn about binary trees. (Teaching and case study)

2. Explore various binary tree traversal algorithms. (Teaching and demonstration)

3. Learn the concepts, properties and operations related to binary search tree. (Teaching and demonstration)

4. Learn the concepts, properties and operations related to heap. (Teaching and demonstration)

5. Learn the storage of trees and conversion between trees and binary trees. (Teaching and demonstration)

6. Learn the storage of forests and conversion between forests and trees. (Teaching and demonstration)

7. Explore the traversal algorithms of trees and forests. (Teaching)
B. Objectives

1. Understand basic concepts and properties of binary trees.

2. Be familiar with the recursive and non-recursive binary tree traversal algorithms.

3. Be able to implement and use a binary search tree.

4. Know how to implement and use a heap.

5. Understand the connections between forests, trees and binary trees.
C. Key points and difficulties

Key points

 1. Binary trees

 2. Binary search tree

 3. Heap

4. Connections between forests, trees and binary trees.

Difficulties

 1. Binary search tree

 2. Heap

Chapter 5 Graph

Supported Course Objectives: A.2. Have a general idea about various data structures, understand the logic feature of various data structures, be able to master the physical storage, and design algorithm based on the storage, be able to analyze the performance of the algorithms; B.1. Be able to organize the data reasonably according to the practical problems, and to effectively store the data in the computer; B.2. Bear the ability to design and analyze algorithms for solving engineering problems; B.3. Be able to implement the algorithm through the specific programming language.
A. Contents and Methods

1. Learn the basic concept about Graphs. (Teaching)

2. Learn different data structures for representation of graphs. (Teaching and demonstration)

3. Become aware of basic operations provided by graph. (Teaching and demonstration)

4. Explore depth-first search and breadth-first search algorithms. (Teaching and demonstration)

5. Study the minimum spanning tree problem and its solution. (Teaching and demonstration)

6. Study the shortest path problem and its solution. (Teaching and demonstration)

7. Learn the topological sorting algorithm. (Teaching and demonstration)
B. Objectives

1. Understand basic concepts, properties and operations related to graph.

2. Be familiar with the depth-first search and breadth-first search algorithms.

3. Master Kruskal algorithm and Prim algorithm.

4. Master Dijkstra’s algorithm.

5. Master topological sorting algorithm
C. Key points and difficulties

Key points

 1. Basic concepts, properties and operations related to graph.

 2. Depth-first search and breadth-first search algorithms.

 3. Kruskal algorithm and Prim algorithm.

4. Dijkstra’s algorithm.

Difficulties

 1. Kruskal algorithm and Prim algorithm.

 2. Dijkstra’s algorithm.

Chapter 6 Search

Supported Course Objectives: A.3. Understand the concept of searching and sorting, master various searching and sorting algorithms, be able to analyze the performance of those algorithms. B.1. Be able to organize the data reasonably according to the practical problems, and to effectively store the data in the computer; B.2. Bear the ability to design and analyze algorithms for solving engineering problems; B.3. Be able to implement the algorithm through the specific programming language.
A. Contents and Methods

1. Learn the concept of search. (Teaching and demonstration)

2. Explore how to implement the sequential and binary search algorithms. (Teaching and demonstration)

3. Discover how the sequential and binary search algorithms perform. (Teaching and case study)

4. Become aware of the lower bound on comparison-based search algorithms. (Teaching)

5. Learn about hashing. (Teaching and demonstration)
B. Objectives

1. Explore several common search ways, such as sequential search, binary search and hash search.

2. By comparison and analysis, gain better understanding of various search algorithms.
C. Key points and difficulties

Key points

1. Basic concepts of search.

 2. Sequential search.

 3. Binary search.

4. Hash search.

Difficulties

 1. Binary search.

 2. Hash search.

Chapter 7 Sort

Supported Course Objectives: A.3. Understand the concept of searching and sorting, master various searching and sorting algorithms, be able to analyze the performance of those algorithms. B.1. Be able to organize the data reasonably according to the practical problems, and to effectively store the data in the computer; B.2. Bear the ability to design and analyze algorithms for solving engineering problems; B.3. Be able to implement the algorithm through the specific programming language.
A. Contents and Methods

1. Learn basic concepts of sorting. (Teaching)

2. Explore how to implement various sorting algorithms. (Teaching and demonstration)

3. Comparison between various sorting algorithms. (Teaching and case study)
B. Objectives

1. Explore several common sorting ways

2. By comparison and analysis, gain better understanding of various sorting algorithms
C. Key points and difficulties

Key points

 1. Basic concepts of sort.

 2. Various sorting algorithms.

 3. Complexity of sorting algorithms.

Difficulties

 1. Quick sort.

 2. Merge sort.

 3. Heap sort

Other Projects and Activities
	ID
	Title
	Hours
	Category
	Requirement
	Comments

	A
	List operations
	3
	Design
	Mandatory
	

	B
	Binary tree operations
	3
	Design
	Mandatory
	

	C
	Graph operations
	3
	Verification
	Mandatory
	

	D
	Search operations
	3
	Design
	Mandatory
	

	E
	Sorting operations
	3
	Verification
	Mandatory
	

Experiment A. List operations

1. Content

 Singular linked list construction, merge and output.

2. Purpose

Get familiar with Visual C++.

 Master these basic operations of singular linked list.

3. Question

1) Input 5 integers, construct a sorted linked list, and output this linked list.

2) Input another 5 integers, construct a sorted linked list, and output this linked list.

3) Merge these two sorted linked lists into one sorted linked list, the space complexity should be O(1), output the linked list

4. Equipment

 PC and VS.net IDE

Experiment B. Binary tree operations

1. Content

 Construct a binary tree and traverse it.

2. Purpose

1) Master the usage of pointers.

2) Master the structure of binary tree.

3) Master the way to process binary tree with pointer.

4) Master the usage of stacks and queues.

3. Question

1) Construct a binary tree in preorder, “#” represent blank.

2) Traverse this binary tree in inorder and postorder

3) Calculate the depth of this tree and output it.

4) Implement non-recursive preorder traverse algorithm with stack.

5) Implement level order traverse with queue.

4. Equipment

PC and VS.net IDE

Experiment C. Graph operations

1. Content

 Construct a graph and traverse it.

2. Purpose

1) Master the two implementations of graph, i.e., adjacency matrix and adjacency list.

2) Master two ways to traverse the graph, i.e., depth-first and breadth-first.

3. Question

1) Construct an undirected graph with adjacency matrix or list.

2) Traverse this graph in depth-first manner and output the sequence.

3) Traverse this graph in breadth-first manner and output the sequence.

4. Equipment

PC and VS.net IDE

Experiment D. Search operations

1. Content

Construct a binary search tree, and search in a binary search tree.

2. Purpose

1) Get familiar with the definition of binary search tree.

2) Get familiar with the construction of binary search tree.

3) Get familiar with the search operation in a binary search tree.

3. Question

1) Construct a binary search tree from the keyboard input.

2) Traverse this binary tree in preorder, inorder, and postorder.

3) Search the binary search tree for a specific number.

4. Equipment

 PC and VS.net IDE

Experiment E. Sorting operations

1. Content

 Quick sort.

2. Purpose

1) Get familiar with the idea of various sorting algorithms.

2) Understand quick sort algorithm.

3. Question

1) Input 8 integers from the keyboard.

2) Sort these 8 numbers in ascending order with quick sort.

4. Equipment

 PC and VS.net IDE

Note: This course is a special basic course, which is suitable for sophomores. Experimental types include verification experiment and design experiment, experimental report includes topics, experimental content, the procedures used in the data structure and symbol description, the main program flow chart, program main function, when running the initial value and the operation results, and gain experience, source program. The evaluation of the experiment and the proportion of the score and the grading rules are shown in Appendix 1.
